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The random-phase approximation of the displaced density of an electron gas due to the presence of a
foreign charge assumes a rather large error when the mean density of the gas is commensurate with that of
conduction electrons in a metal. The assumption of a linear response is not quite valid. A modified formula,
entailing little additional mathematical labor but treating the low-density problem more realistically, is
proposed for the case of a negative foreign charge. For an arbitrary foreign-charge distribution, two expres-
sions, each of which contains as special cases both the random-phase and the nonlinear Fermi-Thomas ap-
proximations. are examined. One of these comes quite close to reproducing the exact quantum-mechanical
results in the hypothetical test case of a gas of noninteracting electrons.

O relate the charge density —en(r) of an infinite
system of electrons in the ground state to the
potential w(r) created by a foreign-charge distribution—
which serves as a model for depicting impurity effects
in metals and which bears on the study of electron
correlations—is not a simple matter even with the
disregard of exchange in an independent-particle ap-
proximation. A straightforward Hartree calculation for
a point impurity charge would be comparable to that
for an atom of infinite electrons.
The random-phase approximation! (RPA) of this
relation may be expressed by

An=n(r)—no= (kr/m%awe)Qkr)u(r) 1
in conjunction with Poisson’s equation
4dreAn= V%, 2)

where 7, is the mean value of #(r), k®=37w%1,, a0 is the
Bohr radius, v(r) represents the potential arising from
the electrons in combination with the conventionally
assumed neutralizing uniform distribution of fixed
positive charge,

u(r)=w(r)+(r), 3)

and, with 71(x)= (sinx—x cosx)/?,
ZWQ(kp)u(r)=kp/dr’ u(r+r')j1(2kpr’)/r'2. 4)

The integral operator Q is commonly expressed through
its Fourier transform inasmuch as

Okr)er =4/ 4ks?)e 7, ©
where
1—x2 1+a\2
s =i () ©

Equation (1) is the first-order correction resulting
from treating w(r) in the Hartree equation as a per-
turbation upon a free electron gas. The question arises

1 D. Pines, Elementary Excitations in Solids (Benjamin, New
York, 1964), p. 146.

as to whether the nonlinear corrections of higher order
can properly be neglected.

Physical interest tends to concentrate on a range of
values of 7, appropriate to the conduction electrons in
metals, ie., 1.857,55.5, where 3/4nrla®=ne The
foreign-charge distribution, on the other hand, must
consist of a collection of point charges, each having a
magnitude that is some multiple of e. For this 7, range
and for only a single point charge of —e the linear
approximation of #(r) assumes, in defiance of reality,
rather large negative values in the vicinity of the point
charge. The consequent error in the potential energy
from the interaction of the impurity charge with the
displaced electronic charge is shown below to exceed
209%,. It is the purpose of this paper to analyze certain
nonlinear formulas which promise some improvement
upon Eq. (1).

One well-known nonlinear expression is?

3rtn(r)=[kr*+ (2/a)u(r) P2 for Ekrlae>—2u
=0 for kplaee<—2u, (7)

which, with Eq. (2), leads to the Fermi-Thomas
equation. A linearized version?

An= (kr/m2awe)u(r), (8)

the result of preserving the first two terms of the
expansion of the right-hand side of Eq. (7) for

2| u|<<krlage, 9)
has proven useful.

It is evident from Eqgs. (5) and (6) that for £ — O,
Q(kr) — 1, rendering Egs. (1) and (8) equivalent. In
this circumstance Eq. (7) is preferable to Eq. (1),
since condition (9), which justifies Eq. (1) as well, may
not be met. A Coulomb potential, however, has im-
portant short-wavelength components. Equation (1),
in contrast to Egs. 7 and 8, admits* oscillations of the
Friedel® kind.

2L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);
E. Fermi, Z. Physik 48, 73 (1928).

8 N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936).

47. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959).

5 J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
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An expression which reduces to either Egs. (1) or
(7) under the circumstances that favor the use of that
particular equation is

3rn(t) =Lk P+ (2/aee)Q (kr)u(r) JP?
for krlaee>—2Qu

=0 for kpfae<e—2Qu. (10)

Now in the derivation of Eq. (4) the parameter kr
serves as the limit on the occupied states. In the Fermi-
Thomas treatment, however, this limit depends on
n(r) rather than #,. For instance, where w is positive
one expects that # (r) >n,, thus providing for additional
states to be occupied by electrons bound to this par-
ticular region. Hence, letting {*=#(r)/no, one can
perhaps refine Eq. (10) with

3rn(r) = [kr*+ (2/ae)Q Sk r)u(r) P2
for krlaee>—2Qu

=0 for krfaee<—2Qu. (11)

These formulas are tested in a simple way by con-
sidering a hypothetical gas of electrons that are affected
by a point impurity charge Ze, giving

w=Ze/r, (12)

but do not interact with each other, i.e., v=0. Quali-
tatively, the resulting unscreened potential, u=_Ze/r,
resembles the screened potential, particularly in the
critical region about =0, where the contribution from
v is not important. The exact quantum-mechanical
result, derived from the known wave functions for this
simple Coulomb potential, is given by

(7r/2k Fs)n (l') =G (Z/k Fdo,2k F")
+ (Z/krao)®g(2Z7/ay) for Z>0
=G(Z/krao,2ksr) for Z<0, (13)

where, upon denoting by Fi (¢,0,x) the confluent
hypergeometric function,®

#GGs)=s [ ayya—ermy
1

oly
x f dx) Fa(isy,Lin) |,
0

and, representing the contributions from the bound
states,

w e &n a1

E 21
gH=2 2 QHDE—I-D(n+D) (;)

n=1 g% 1=0

n—l-1 (=Dm(&/n)™ 2
X( Z, m!(n—l—m—l)!(m—l—Zl—l—l)!) )

8 H. Jeffreys and B. S. Jeffreys, Methods of M athematical Physics
(Cambridge U. P., Cambridge, England, 1950), 2nd ed., p. 607.
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Equations (1), (7), (10), and (11) all give An — Zky/
w2ag as r — o, in agreement with Eq. (13). Hence the
errors in the predictions of these four formulas at »=0
provide some measure of their reliability inasmuch as
|An| assumes its maximum value at this point. Table I
compares these predictions, with the exclusion of the
result # — o« for Z>0 and #=0 for Z<0 from Eq. (7),
against that from Eq. (13) over a range of values of #,.

In Table II other values of » within the region where
|An| is relatively large are considered for a value of 7,
which for Z=4-1 lies near the middle of the metallic
range. For Z<0 Egs. (7), (10), and (11) yield only a
small percent of error, as determined from Eq. (13),
with respect to An.

A formula like Eq. (11) in intent is available through
the variational approach of Hohenberg and Kohn
(HK).” Employing their Eq. (83), as subsequently
amended,® gives, as the condition for an energy ex-
tremum under variation of #(r),

()= kit (2/ave)ut (2r%/kr)
XOA—-Q7'Ckr) Jn+-T, (11)

where T'(r) is an integral expression of second order in
the difference in the values of # at a variable and a fixed
position. It arises from the fact that the kernel in Eq.
(83) is also dependent on %. The use of Q as defined by
Eq. (4) corresponds to the RPA approximation of the
dielectric coefficient appearing in their formula. Of
course, one could redefine Q so as to reflect exchange and
correlation corrections.

In Eq. (83) of HK only terms up to the second order
in the deviation of #(r) from its value at a fixed position
have been considered. This limits the expected accuracy
of Eq. (11') to first-order terms. While there is pro-
vision for extension to second-order terms and beyond—
as one could obtain the second-order perturbation
correction to Eq. (1) and modify Eq. (11) accordingly—
the anticipated complexities give such a procedure little
promise.

Now it can be shown that to the extent of terms that
are linear in Vn (or, therefore, in V#) the gradient
expansions of Egs. (11") and (11) agree. With the aid of
Egs. (5) and (6), Eq. (11) may be rewritten as

GBrn)B=rkpr+ai e L f(— 1%k V0.

Inasmuch as the expansion %f(?)=1—%x>—--- con-
verges for 22<1, one obtains for relatively slow vari-
ations

1
_VE

2
(Bron)t=ky+ —-<1+
12¢% 52

aoe

1
—_— V2V2+ cee )u ,
240¢ %kt

7 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
8 W. Kohn and L. T. Sham, Phys. Rev. 140, A1133 (1965).
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TaBiE 1. Density {3 #3/372 of a gas of noninteracting electrons
at the position of a point impurity charge Ze for various mean
densities 27%/3w2.
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TasLE II. Density {%#3/372 of a gas of noninteracting electrons
at various distances 7 from a point impurity charge Ze for the
mean density whereby 2m|Z|/krao=10.

{3
From From From From
27Z [krao Eq. (13) Eq. (11) Eq. (10) Eq. (1)
—10.0 0.000 106 5 0.007 14 —6.5
—5.0 0.013 22 0.043 16 —2.75
—2.0 0.199 3 0.2361 —0.5
—1.0 0.458 5 0.476 0.354 0.25
—0.5 0.682 0.650 0.688 0.625
0.0 1.000 1.000 1.000 1.000
0.5 1.443 1.454 1.398 1.375
1.0 2.050 2.110 1.837 1.75
2.0 3.930 4.236 2.828 2.5
5.0 18.93 23.17 6.55 4,75
10.0 106.3 140.0 14.7 8.5
© 0.731(rZ /krae)*(wZ [krad)?
or, to the same order in V,
2 3/2
3rn= (kp2+ ———u)
ape
1 2 \2
Xl:l-{-— kr?+ —u) V2u+--~:|,
dape ot

which appears to be just that portion limited to linear
terms in Vu of the series that results from applying
quantum corrections’ (exclusive of exchange and
correlation corrections) to the Fermi-Thomas model.

With respect to the remainder of the quantum cor-
rections, Eq. (11”) does reproduce the term proportional
to Vu-Vu by virtue of the function 7'(r). Otherwise,
neither Eq. (11) nor Eq. (11’) is faithful to the series.

However, they offer a more realistic response to rapid
changes in #. In the example #=Ze/r, unlike the quan-
tum-corrected statistical model they predict a bounded
n(r) for Z>0.

An additional shortcoming of the quantum cor-
rections is their omission of the quantum-oscillatory
terms. It has previously been remarked that Eq. (1)
provides a quantum oscillation. However, in the
example of #=Ze/r one finds that Egs. (1), (11), and
(11") all give such an oscillation which, while of the
right wavelength, is not necessarily correct as to mag-
nitude or phase.

To show this one obtains for large 7 from Eq. (13)

372 6s  6s?  4s8
kg p P P
6 g (p+2s Inp)
+0(™)
o3 sinhwrs T'%(is) ’

9 A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksperim. i Teor.
Fiz. 31, 427 (1956) [Soviet Phys. JETP 4, 328 (1957)]; D. A,
Kirzhnits, ibid. 32, 115 (1957) [5, 64 (1957)7; S. Golden, Phys.
Rev. 105, 604 (1957).

IS
From From From From From
|Z|r/a0 Eq. (13) Eq. (11) Eq. (10) Eq. (7) Eq. (1)
Z>0
0 106.3 140.0 14.7 © 8.5
1 16.32 16.06 10.19 14.94 6.55
2 6.28 6.755 6.80 6.64 4.885
3 4.51 4,33 4.63 4.41 3.67
4 3.42 3.385 3.43 3.41 291
Z<0
0 0.000 106 5 0.007 14 —6.5
1 0.000 678 0.008 33 —4.55
2 0.002 905 0.009 98 —2.89
3 0.009 15 0.012 43 —1.67
4 0.0230 0.016 41 o —0.91
5 0.048 5 0.0240 0.000 65 oo —0.49
6 0.088 7 0.044 2 0.066 4 0.0614 —0.25
7 0.144 0.129 1 0.1412 0.1452 ~0.09
8 0.210 0.2337 0.217 1 0.222 1 0.042
9 0.29 0.294 6 0.289 3 0.289 0.156

where s=Z/kray and p=2kpr, and from Eq. (11) as
well as from Eq. (11')

32 6s 65  4s®  6s
—n(t) =14+ —+ — — — — —cosp+0(p™*).
kr? e P2 P P

Evidently, the two expressions agree only in the limit
of kp— 0.

This expansion also confirms the superiority of Eq.
(11) [or of Eq. (10) since to this order one may set
¢=17] with respect to Eq. (1), which fails to produce
the nonoscillatory terms beyond 6s/p. Eq. (7), by
contrast, gives to the order shown just the nonoscil-
latory terms.

In this example Egs. (11) and (11’) exhibit identical
errors to the order considered. This suggests that the
choice between them be governed by the greater
simplicity of Eq. (11).

The apparent reasonableness of Eq. (10) for negative
Z suggests as a modification of Eq. (1)

An= (kp/m%ae)Q(kr)u(t) for krlae>—3Qu
= —k /3 for krfae <—3Qu,

which satisfies Eq. (10) for kr?a¢e< —2Qu and a linear
version thereof for krfaee>—3Qu but disallows the
negative values for #(r) resulting from this linear
version for —2Qu<kp’ae <—3Qu. The effect of this
modification is seen in Tables I and II by substituting
zeros for the negative values in the columns under
Eq. (1).

Returning to the matter of screening in the case of
the point impurity charge, one obtains from Egs. (1)~
(3) in connection with Eq. (12), for which VZ=0
when 75240,

(14)

waoVu=4kzQ(kr)u, (15)
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TasLE III. Variation of the displaced electron density Az with
distance 7 from a point impurity charge —e for 7,=3.0.

—An/kﬁ
kpr From Eq. (17) = From Eq. (20)
0.0 0.127 6 0.033 8
0.1 0.1170 0.033 8
0.4 0.088 47 0.033 8
0.7 0.064 18 0.033 8
1.0 0.044 41 0.033 8
13 0.029 04 0.033 8
1.6 0.017 67 0.021 54
1.9 0.009 758 0.0119
2.5 0.001 680 0.002 048
3.1 —0.000 294 5 —0.000 359
3.7 —0.000 064 59 —0.000078 7

a See Ref. 4.

subject to the boundary conditions,

ling ru==2Ze (16a)
and

lim 7 =0

T (16b)

(under the assumption that the system, comprising
the electrons, impurity, and fixed positive charge, is
electrically neutral). The consequent Az is given by

An/kit=ZY (y,2k ), 17

where v=2rkra, and

7Y (v,p) =4/ dx xf(x?) sinpx/ [y f(x%)].

0

The function ¥ (v,p) has been tabulated by Langer and
Vosko* for several values of v.
With the substitution of Eq. (14) for Eq. (1), Eq.
(15) is replaced by
wa Vu=4krQ(krp)u for r>r,
for r<r,, (18)

where 7, is the value of 7 for which &g%ae= —3Qu. For
r>7y, Eq. (18) and the boundary condition (16b) are
satisfied by

= —%krlaee

u=41rﬁka3er—1/ ds s(s—7)Y (v,2kps);

for <7, Eq. (18) and the boundary condition (16a),
by
u=a-+Zer*— (2kre/9m)r2.

One chooses «, 8, and 7, to give these two expressions
the same value and the same first and second deriva-
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tives at r=r,. This requires

30282V (v,2kpre) = —1

2kpro 4kF3703
ﬁ<1~%7r/ dp pZY(v,p)>=1—
0 97

and

when

3m2ZY (v,0) <—1. (19)

Otherwise, one finds 3=1 and 7,=0, representing the
RPA. The resulting Az is

A%/kp3=,BZY(’Y,2kF7‘) for r>r

=—372 for 7<r,. (20)

There is a particular value for v above which con-
dition (19) does not obtain. Consequently, since the
RPA becomes exact in the high-density limit,* so must
Eq. (18).

On the other hand, for #p— 0 when Z=—1, the
above relations give 7o— 7,ao while the expression for
n deriving from Eq. (20) reduces to a step function:

=0

=kF3

for 7<rsaqo
(21)

Since the electrons in this limit may be regarded as
static and have the same charge as the point impurity,
Eq. (21) may be judged by how well it also serves as
their pair function. To comply with Eq. (21)—to the
extent of a spherical approximation of the Wigner-
Seitz cell—the electrons must arrange themselves into
a lattice, as depicted by Wigner.1

Hence, the modified RPA formula proposed here for
negative values of Z is realistic at both density extremes.

In the metallic range of 7, the difference in the results
from Egs. (17) and (20) for Z= —1 is quite pronounced.
Table III shows this for 7,=23.0, which finds 3=1.219
and kpro=1.330. The potential energy from the inter-
action of the impurity charge with the displaced

electronic charge
4re? / dr rAn
0

turns out to be —0.891 & re? and —0.733 kre? according
to the RPA and its modification, respectively. Inasmuch
as even the latter, as deduced from Table IT, exaggerates
the screening at small #, the RPA error due to its
presumption of a linear response must be larger yet
than the difference between these values.

for r>rsa,.

0 F, Wigner, Phys. Rev. 46, 1002 (1934).



